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Abstract

Current GPUs perform a significant amount of redundant shading
when surfaces are tessellated into small triangles. We address this
inefficiency by augmenting the GPU pipeline to gather and merge
rasterized fragments from adjacent triangles in a mesh. This ap-
proach has minimal impact on output image quality, is amenable
to implementation in fixed-function hardware, and, when rendering
pixel-sized triangles, requires only a small amount of buffering to
reduce overall pipeline shading work by a factor of eight. We find
that a fragment-shading pipeline with this optimization is competi-
tive with the REYES pipeline approach of shading at micropolygon
vertices and, in cases of complex occlusion, can perform up to two
times less shading work.

CR Categories: I.3.1 [Computer Graphics]: Hardware
architecture—Graphics processors

Keywords: GPU architecture, real-time rendering, micropolygons

1 Introduction

To create surfaces with fine geometric detail, artists increasingly
produce dense polygon meshes. In addition, this year the Direct3D
11 standard has introduced a tessellation stage into the graphics
pipeline. This stage samples surfaces to produce triangle meshes.

Unfortunately, current GPUs shade small triangles inefficiently.
Rasterized triangles contribute fragments to each pixel they overlap.
When triangles are small, many pixels contain multiple fragments
due to partial overlap. Each of these fragments is shaded, leading to
pixels being shaded redundantly. The severity of this “over-shade”
problem is shown in Figure 1, where the same scene is rendered
with decreasing polygon size. When the scene is tessellated into
pixel-sized triangles, a GPU will shade each covered pixel more
than eight times (once for each overlapping fragment). Given that
shading is the major component of most rendering workloads, this
significantly increases rendering cost.

We augment the GPU pipeline to reduce the amount of redundant
shading performed when rendering small triangles, which we as-
sume are generated by tessellation in a prior pipeline stage. To
reduce shading, we merge fragments at the same pixel, but from
different triangles, in a fixed-size buffer between the rasterization
and shading stages. We merge fragments only if they satisfy a set of
compatibility rules, including triangle adjacency, which ensure they
can be adequately shaded by a single calculation. When processing
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Figure 1: Over-shade in a GPU pipeline increases as scene tri-
angle size shrinks (images are colored according to the number of
fragments shaded per pixel). When this scene is tessellated into
pixel-sized triangles, each pixel is shaded more than eight times.

sub-pixel area triangles, merging fragments reduces shading work
by a factor of eight while maintaining image quality.

2 Background

GPU pipelines [Blythe 2006], as well as off-line rendering architec-
tures such as REYES [Cook et al. 1987], employ three important
techniques that limit the number of shading computations needed
to generate high-quality images.

• Independent visibility and shading sampling densities.
Geometric screen coverage is sampled at a higher rate than
shading to anti-alias edges without increasing shading work.
It is sufficient to sample shading more sparsely than screen
coverage because high-frequency content from textures is pre-
filtered.

• Derivatives via finite differencing. Filter extents for tex-
turing are computed via finite differencing of texture coordi-
nates between neighboring shading samples. Sharing data be-
tween neighbors avoids re-computation when finite-difference
derivatives are needed during shading.

• Early occlusion culling. Surface regions that are not visible
to the camera due to occlusion are discarded from the render-
ing pipeline prior to shading.

We now describe how these techniques are implemented for both
the GPU and REYES pipelines. These architectures have very sim-
ilar structure, but differ notably in their approach to shading.

2.1 GPU Shading

GPU pipelines shade each triangle uniformly in screen space at a
density of one shading sample per pixel. Visibility may be sam-
pled at a higher rate than shading to reduce aliasing at triangle
edges (multi-sample anti-aliasing [Akeley 1993]). The process
of rasterizing and shading a triangle using 4× multi-sample anti-
aliasing (MSAA) is illustrated in Figure 2. In this example, the
rasterizer samples triangle coverage at four multi-sample locations
within each pixel. Panel 1 of this figure shows a 4x4 pixel region of
the screen. Multi-sample locations are shown as black dots. Panel
2 highlights the multi-sample locations covered by a triangle in red.

If any multi-sample location in a pixel is covered by the triangle,
a shading computation must be performed for that pixel using in-
formation from the triangle. Shading inputs such as texture co-
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Figure 2: Rendering a triangle to a 4x4 pixel screen region using
4× multi-sample anti-aliasing: Triangle visibility is sampled four
times per pixel (panels 1,2). Shading is sampled once per pixel at
2x2 pixel granularity (3,4). The results of visibility and shading
computations are stored in the multi-sample buffer (5), which is
filtered to produce final image pixels (6).

ordinates are interpolated from values stored at triangle vertices,
using the location of the pixel center as the interpolation/sampling
point [Kessenich 2009; Microsoft 2010]. Panel 3 shows the pixel
centers as dots. If the pixel center lies outside the triangle, the shad-
ing inputs are extrapolated. Alternatively, GPUs permit shading in-
puts to be sampled at the covered multi-sample location which is
closest to the pixel center (centroid sampling [Kessenich 2009; Mi-
crosoft 2010]). Centroid sampling avoids the need to extrapolate
shading inputs, but results in a non-uniform screen-space sampling
of shading near triangle edges.

The information needed to compute a triangle’s shading at a pixel
is encapsulated in a record called a fragment. This information con-
sists of shading inputs, along with triangle coverage and depth in-
formation for each of the pixel’s multi-sample locations. (For con-
venience, we say a fragment “covers” a multi-sample location if
the triangle it was created from did). To support derivative esti-
mates using finite differencing, rasterization generates fragments in
2x2 pixel blocks [Akeley 1993]. We refer to blocks of four frag-
ments as quad fragments. Panel 3 shows the three quad fragments
generated by rasterizing the triangle in gray. It also shows shading
sample locations for each fragment (white dots). Notice that if the
triangle covers any multi-sample location in a 2x2 pixel region, a
quad fragment is generated at these pixels, and shading is computed
at all four corresponding pixel centers. The results of shading each
fragment are given by the colored pixels in panel 4.

Unique color and depth values are stored for each multi-sample in
the frame buffer. After a fragment has been shaded, its color is
stored in all multi-samples covered by the fragment (panel 5). Fi-
nally, at the end of the frame (after all rasterization and depth test-
ing is complete) the colors of multi-samples within each pixel are
filtered to produce a final rendered image (panel 6).

GPU shading is efficient when triangles are large. Most quad frag-
ments are covered entirely by the triangle and the overhead of shad-
ing extra fragments near triangle edges is low. This overhead in-
creases as triangle size shrinks. For example, the triangle in Fig-
ure 2 is approximately two pixels in area, but it causes a GPU to
shade twelve fragments.

2.2 REYES Shading

Unlike GPUs, the REYES architecture [Cook et al. 1987] shades
micropolygon vertices prior to rasterization. To shade approxi-

mately once per screen pixel, REYES must tessellate surfaces into
micropolygons approximately one pixel in area. In REYES, tessel-
lation produces a stream of grids. Although the term grid originally
referred to a regular matrix of quadrilateral micropolygons [Apo-
daca and Gritz 2000], in modern REYES implementations, a grid is
simply a collection of micropolygons with adjacency information.

Grids are the minimal granularity of shading work in REYES. Grid
vertices are shaded together, permitting efficient data-parallel exe-
cution and computation of derivatives via finite differencing (adja-
cent vertices in a grid are known). Grids are also the granularity
of culling: either an entire grid is discarded prior to shading, or
all vertices in the grid are shaded. Thus there is tension between
the need to make grid sizes large (to increase the data-parallel ef-
ficiency of shading computations and to reduce redundant shading
at grid boundaries) and the desire to keep grids small for culling (to
eliminate unnecessary shading of occluded surfaces).

It is simple for a REYES pipeline to sample visibility at a higher
rate than shading because shading occurs prior to rasterization.
During rasterization, surface color at shaded vertices is interpo-
lated onto each visibility sample point covered by a micropolygon.
Shading prior to rasterization is also fundamental to the REYES
pipeline’s support for advanced rendering effects such as motion
and defocus blur. Incorporating these features into a GPU fragment
shading pipeline remains an area of active research [Ragan-Kelley
et al. 2010] and is not attempted in this work.

2.3 Evolving the GPU

Although REYES provides an efficient and proven solution for
shading micropolygons, we have chosen to explore the option of
evolving the GPU pipeline to support real-time micropolygon ren-
dering. Our motivations included the following:

• Achieving real-time performance. Researchers have ported
aspects of the REYES pipeline to GPUs [Wexler et al. 2005;
Patney and Owens 2008] or even the full pipeline [Zhou et al.
2009]. However, REYES rendering performance is still far
from meeting real-time requirements. Evolving the highly-
optimized pipeline architecture of current GPUs (rather than
porting REYES to run as a GPU compute application) seemed
more likely to achieve our performance goals.

• Retaining fine-grain occlusion culling. GPUs shade after
rasterization, allowing hierarchical depth algorithms [Greene
et al. 1993] to efficiently cull occluded fragments at granular-
ities approaching single pixels. We hoped to retain this effi-
ciency.

• Maintaining development continuity. Evolving GPUs and
their current rendering algorithms would allow current GPU-
based applications to transition gradually toward micropoly-
gon rendering, at all times trading off quality and performance
to optimize user experience.

Current GPUs shade fragments immediately after rasterization,
rather than postponing shading until all occlusions are resolved at
the frame buffer. Such “deferred shading” [Deering et al. 1988] is a
tempting optimization that offers the promise of executing exactly
one shading operation per pixel. However, it is eschewed by GPU
architects as a core pipeline mechanism because it interacts badly
with multi-sample anti-aliasing (recall, pixels containing object sil-
houettes must be shaded more than once to obtain smooth edges).

To support anti-aliasing, previous hardware implementations of
deferred shading compute shading at each multi-sample location,
rather than just once per pixel [Molnar et al. 1992]. While some
current game engines implement deferred shading as a software
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Figure 3: Our quad-fragment merging pipeline: tessellation produces grids of triangles with adjacency. The triangles are rasterized to
produce quad fragments. The merging unit buffers and combines rasterized quad fragments. Merged quad fragments are emitted for shading.

quad_fragment {
  int           x, y;
  bool          facing;
  
  BITMASK       coverage;     // 4*MULTISAMPLES bits
  float         z[4][MULTISAMPLES];
  
  BITMASK       shade_coverage;            // 4 bits
  SHADER_INPUT  shade_input_data[4];
};

buffer_entry {
  quad_fragment frag;
  BITMASK       tri_mask;                // 512 bits
  BITMASK       adj_mask;                // 512 bits
};

bool can_merge(e1, e2) {
  return 
      e1.frag.x == e2.frag.x &&
      e1.frag.y == e2.frag.y &&
      e1.frag.facing == e2.frag.facing &&
     (e1.frag.coverage & e2.frag.coverage) == 0 &&
     (e1.tri_mask & e2.adj_mask);
}

// merge quad-fragment in entry e2 into e1
void merge(e1, e2) {
  select_shading_inputs(e1.frag, e2.frag);
  copy_z(e1.frag, e2.frag);
  e1.frag.coverage |= e2.frag.coverage;
  e1.tri_mask |= e2.tri_mask;
  e1.adj_mask |= e2.adj_mask;
}

Figure 4: Each merge-buffer entry (buffer entry) contains
a quad fragment and bitmasks enumerating the quad fragment’s
source triangles and the triangles that are adjacent to source tri-
angles. Determining whether two buffer entries can be merged
(can merge) involves only a few bitwise operations.

layer running on GPUs, they do so by disabling multi-sample anti-
aliasing and accepting the resulting loss in image quality. Di-
rect multi-sample frame-buffer access in Direct3D 10.1 [Microsoft
2010] allows software approaches to provide limited multi-sample
anti-aliasing support, but requires shading inputs to be computed
and stored at all multi-sample locations and does not robustly sup-
port finite-difference derivatives in shaders. In light of these draw-
backs, we do not attempt evolving the GPU pipeline toward de-
ferred shading.

3 Quad-fragment Merging

To reduce the overall cost of shading micropolygons in a GPU
pipeline, we propose merging rasterized quad fragments (with
sparse multi-sample coverage) into a smaller number of quad frag-
ments (with dense multi-sample coverage) prior to shading. Our
technique, which we refer to as quad-fragment merging, is illus-
trated by the modified GPU pipeline in Figure 3.

In this pipeline, grids are generated from surface patches via tessel-
lation. Our notion of a grid is similar to that of REYES. A grid is a
group of triangles with adjacency information provided by the tes-
sellator. A merging unit, which sits between rasterization and shad-
ing, buffers rasterized quad fragments from a grid. In the merging
unit, quad fragments at the same screen location are identified and
merged to reduce the total amount of pipeline shading work. To
avoid aliasing or derivative artifacts, only quad fragments from grid
triangles sharing an edge are merged. The output of the merging
unit is a stream of quad fragments for shading. Unlike the quad
fragments produced by rasterization, merged quad fragments con-
tain shading inputs and multi-sample coverage information from
multiple triangles.

The primary component of the merging unit is a fixed-size
buffer (called the merge buffer) that stores quad fragments for
merging. To facilitate the description of merging-unit behav-
ior, we provide C-style definitions of a quad-fragment record
(quad fragment) and a merge-buffer entry (buffer entry)
in Figure 4. Quad fragments consist of coverage and depth in-
formation at each multi-sample location, as well as input data for
shaders (shade input data). Shading inputs are defined by
fragment shader signatures and include all interpolated attributes
(e.g. texture coordinates, position, normal). Source triangle sided-
ness (facing) as well as its coverage of each fragment’s shading
sample location (shade coverage) are also stored in the quad-
fragment record.

Each merge-buffer entry contains a quad fragment and two bit-
masks. The source triangle mask (tri mask) enumerates trian-
gles that have contributed to this quad fragment. Bit i in the mask
is set if the entry’s quad fragment was generated by rasterizing grid
triangle i, or if quad fragments from triangle i have been merged
into this entry. Bits in the adjacent triangle mask (adj mask) are
set for all triangles that share an edge with source triangles. In our
implementation, these masks are sized to support grids of up to 512
triangles (512-bit masks), but could be sized differently to permit
merging quad-fragments from larger or smaller groups of triangles.

When a quad fragment arrives as input from the rasterizer, the merg-
ing unit checks to see if the incoming quad fragment can be merged
with an existing entry in the merge buffer. The merging unit first
determines the set of quad fragments in the buffer with the same
screen-space location and sidedness. In hardware, this can be im-
plemented with a content addressable memory (CAM). If the set is
non-empty, the merging unit then executes can merge for the N
most recently added quad fragments in the set (in our implementa-
tion N = 2). If can merge returns true, the new quad fragment
is merged. Otherwise, the quad fragment is placed in an available
buffer entry. If no entries are available, a buffer entry is chosen for
eviction (using a FIFO policy) and submitted to the shading system.

In the next two sections, we describe in more detail the conditions
required to merge two quad fragments and the process of construct-
ing a merged quad fragment.
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Figure 6: Merging does not occur across the grid’s silhouette edge
because triangles in the red region of the surface do not share an
edge with triangles colored in yellow. Grid triangles (3,4,9,10) are
back-facing so their quad fragments cannot be merged with those
of the red or yellow groups.

3.1 Conditions for Merging

Two quad fragments may be merged if they meet four conditions:

1. They have the same screen-space location.

2. They do not cover the same multi-sample location (they do
not occlude each other).

3. They have the same sidedness (either front or back-facing).

4. Their source triangles are connected via edges.

For a pair of quad fragments, these four conditions can be checked
using simple bitwise operations (see function can merge, Fig-
ure 4). Figure 5 shows merging unit behavior for a sequence of
three triangles that fall in the same 2x2 pixel region (we label the tri-
angles by the order they arrive at the merging unit). First, the quad
fragment from triangle 1 is inserted into the merge buffer (there are
no quad fragments to merge with). Next, the quad fragment from
triangle 2 is merged with the quad fragment in the buffer because
triangle 2 is in the entry’s adjacent triangle mask (triangle 2 shares
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quad fragment 1

quad fragment 2

merged result

Figure 7: Three cases for selecting shading inputs for a merged
quad fragment (pixel centers are colored according to the quad
fragment from which shading inputs are selected). Case 1: the
top-left and bottom-right fragments receive shading inputs from the
quad fragments that cover the pixel center. Case 2: the bottom-left
fragment is assigned shading inputs from quad fragment 1, because
triangle 1 covers the closest covered multi-sample location to the
pixel center. Case 3: the top-right fragment is not covered. It re-
ceives inputs from quad fragment 1 because its horizontal neighbor
(the top-left fragment) is covered by quad fragment 1.

an edge with triangle 1). Finally, the quad fragment from triangle 3
merges with the buffered quad fragment (triangle 3 shares an edge
with triangle 2). In this example, shading only the merged quad
fragment, rather than each rasterized quad fragment, reduces shad-
ing work by three times.

The conditions above prevent merging across many types of discon-
tinuities, such as silhouettes or folds. In Figure 6, quad fragments
for the red portion of the grid originate from triangles that do not
share an edge with triangles in the yellow region. The quad frag-
ments from these two groups of triangles are not merged. In the
top right pixel, the red and yellow shading results will be blended
together, resulting in an anti-aliased edge. Additionally, by shading
these quad fragments separately, shader derivatives are representa-
tive of actual screen-space derivatives for each group of triangles.
In this example, the occlusion and sidedness checks alone would
not have prevented merging.

In many cases, the merging rules produce a single quad fragment for
each grid that overlaps a 2x2 pixel region of the screen. Clearly, if
grid geometry exhibits high-frequency detail (e.g. a bumpy surface
tessellated into triangles much smaller than a pixel), shading it once
per pixel may cause aliasing. In contrast to current GPUs, which
perform extra shading in this case, quad-fragment merging limits
shading costs and requires geometry to be properly pre-filtered to
avoid aliasing.

3.2 Performing Merges

There are two steps required to merge quad fragments contained
in buffer entries e1 and e2 (see function merge, Figure 4). First,
shading inputs for each fragment in the merged quad fragment must
be assigned. While quad fragments emitted by rasterization contain
only a single source triangle, this is not true for merged quad frag-
ments. Because of this, the shading input for each fragment in the
merged quad fragment must be chosen from the two input quad
fragments. Figure 7 illustrates the three selection cases:

1. The pixel center is covered (the top-left and bottom-right frag-
ments). Shading inputs are selected from the quad fragment
that covers the pixel center.

2. The pixel center is not covered, but multi-sample locations
within the pixel are covered (the bottom-left fragment). Shad-
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Figure 8: Left: The pipeline rasterizer is modified to emit a quad
fragment with an empty coverage mask when triangles fall within
a 2x2 region but do not cover a multi-sample location (triangle 2).
This quad fragment facilitates merging quad fragments from tri-
angles 1 and 3. Right: The quad fragment from triangle 5 can-
not merge with the quad fragment from 1,2,3, and 4 until after the
arrival of the quad-fragment from triangle 6. Robustness to sub-
optimal triangle ordering is increased by attempting merges prior
to evicting quad fragments from the merging unit.

ing inputs are selected from the quad fragment with the closest
(relative to the pixel center) covered multi-sample location.

3. The pixel center is not covered, and no multi-sample locations
are covered (the top-right fragment). Shading inputs are se-
lected from the same quad fragment as a neighboring covered
fragment (either the horizontal, vertical, or diagonal neighbor
in order).

If the pixel center is not a multi-sample location, it is possible
for both quad fragments to overlap the pixel center but have non-
overlapping coverage masks. In this case, the shading input is cho-
sen from the first quad fragment submitted to the merging unit.

Second, the coverage and topology bitmasks, as well as depth infor-
mation, must be merged. The bitwise operations needed to combine
the coverage and topology information are given in the pseudocode
for merge. Merging the depth values is a data selection controlled
by the coverage masks (recall that the merging rules prevent the
coverage masks from having the same bit set). Once the merged
coverage mask is determined, it is possible that the quad fragment
is fully covered (i.e. that all multi-sample locations in the quad frag-
ment are covered). In this case, the merging unit evicts the quad
fragment, submitting it for shading immediately, because no more
merges are possible.

3.3 Optimizations

Figure 8-left demonstrates a situation where point-sampled visibil-
ity information can cause merging to fail even when all the quad
fragments ideally would be merged. Because triangle 2 does not
cover a multi-sample location the rasterizer does not emit a quad
fragment. This prevents the quad fragments from triangles 1 and 3
from being merged because they do not share an edge. To remedy
this problem, we modify the rasterizer to emit quad fragments with
empty coverage masks whenever a triangle overlaps a 2x2 pixel re-
gion, but does not cover a multi-sample location. In this example,
the empty quad fragment from triangle 2 merges into the buffer, al-
lowing all quad fragments to merge. Quad fragments with empty
coverage masks are never emitted by the merging unit, and thus
never introduce extra shading.

The grid in Figure 8-right presents another scenario where all raster-
ized quad fragments should be merged but are not. In this case, the
order in which the triangles are submitted to the rasterizer causes
a gap in the topology masks. Because triangle 5 is not connected
to triangles 1 through 4, a new quad fragment must be created even
though the grid is fully connected. While it may be possible to opti-
mize triangle orderings for merging, this case can be handled easily

Triangle area in pixels (avg)

nomerge
merge

bigguy: shaded fragments per covered pixel

Fr
ag

m
en

ts
 p

er
 p

ix
el

 (
av

g)

0 1084

2

4

6

8

10

12

14

2 6

Figure 9: When BIGGUY is tessellated into 0.5-pixel-area trian-
gles, NOMERGE generates nearly 14 fragments per covered screen
pixel. The MERGE pipeline shades only 1.8 fragments per pixel.
Even when triangles are ten pixels in area, MERGE provides ap-
proximately a 2× reduction in shading work.

in the merging unit. When a quad fragment is chosen for eviction,
the merging unit attempts to merge the eviction candidate. If the
quad fragment cannot be merged the quad fragment is submitted
for shading. With this modification, the quad fragment for trian-
gles 1 through 4 merges with the quad fragment from triangles 5
through 8 instead of being evicted from the buffer.

4 Evaluation

We evaluate the performance and image quality of quad-fragment
merging using three software rendering pipelines. The first
pipeline, NOMERGE, mimics the behavior of a current GPU by
shading quad fragments from each triangle independently. The sec-
ond, MERGE, also shades quad fragments, but implements quad-
fragment merging as described in Section 3. The third pipeline,
VERTEX, is an implementation of REYES that shades grid vertices.

We use the DiagSplit algorithm [Fisher et al. 2009] to tessellate in-
put surface patches into grids of triangles. DiagSplit integrates into
our pipelines by augmenting Direct3D 11’s tessellation stage [Mi-
crosoft 2010] with an additional stage for adaptive patch splitting.
Tessellated grids contain at most 512 triangles, allowing the merge
unit to encode adjacency using bitmasks as discussed in Section 3.
Grids are occlusion culled immediately following tessellation. As
a result, all pipelines rasterize exactly the same triangles. Unlike
VERTEX, both fragment shading pipelines can also occlusion cull
individual quad fragments prior to shading.

Using the three pipelines, we rendered the eight scenes shown in
Figure 10. PLANE is a basic test of merging behavior. SINWAVE’s
camera position is chosen to create many grazing triangles and is
a quality test for MERGE. FROG (high-frequency displacement)
and BIGGUY are standalone characters. ZINKIA and ARMY pro-
vide moderate depth-complexity scenes. Finally, PTCLOUD and
FURBALL exhibit fine-scale geometry and complex occlusion. All
scenes are rendered at 1728x1080 resolution.

4.1 Performance

4.1.1 Over-shade

Figure 9 plots the average number of fragments shaded by
NOMERGE at each screen pixel and shows that over-shade in the
NOMERGE pipeline is severe (pixels not covered by geometry do
not factor into this average). For example, when BIGGUY is tes-
sellated into 0.5-pixel-area triangle micropolygons and rendered at
16× multi-sampling, NOMERGE shades covered pixels nearly 14
times. Over-shade is notable even for small triangles covering a
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Figure 10: Test scenes featuring high-frequency geometry (SINWAVE, FROG), complex occlusion (PTCLOUD, FURBALL), grazing triangles
(SINWAVE), characters (BIGGUY, ARMY), and environments (ZINKIA).
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Figure 11: Shaded fragments per pixel produced by MERGE (images colored according to the number of fragments shaded per pixel). Most
scenes exhibit large regions of dark blue, indicating one shaded fragment per pixel.

few screen pixels. Ten-pixel-area triangles still result in nearly four
shaded fragments per pixel.

The MERGE pipeline (orange line) reduces the number of shaded
fragments substantially. In many cases, all quad fragments at the
same screen location are merged, so the amount of shading is in-
dependent of the size of scene triangles. Although our focus in
this evaluation is on micropolygon-sized triangles, quad-fragment
merging provides a significant reduction in shading work even
when rendering small (but not necessarily sub-pixel) triangles.

On average, MERGE shades covered pixels approximately 1.8 times.
This number falls short of the ideal one-fragment-per-pixel rate for
three reasons: merging does not occur across grid boundaries, early
occlusion culling in the pipeline is not perfect (regions of objects
are shaded but ultimately occluded), and multiple fragments must
be shaded in pixels containing object silhouettes. The images in
Figure 11, which visualize the number of fragments shaded at each
pixel (0.5-pixel-area triangles), show that MERGE indeed shades
many image pixels exactly once. In these images dark blue pix-
els are shaded once, bright green pixels four times, and dark red
pixels at least eight. A majority of pixels in these images are dark
blue. Pixels near grid boundaries are shaded more than once be-
cause merging does not occur across grids. Shading also increases
near object silhouettes because the screen-projection of grids be-
comes long and skinny (more pixels are near grid edges).

4.1.2 Comparison with NOMERGE

Figure 12 plots the benefit of quad-fragment merging as the size of
the merge buffer is changed. Higher values on this graph indicate
greater reduction in shading work (in comparison to NOMERGE).
A 32-quad-fragment merge buffer reduces the number of shaded
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Figure 12: Quad-fragment merging requires only a small amount
of buffering to capture a high percentage of possible merges. A 32-
quad-fragment buffer captures over 90% of the merges captured by
a buffer of unbounded size.

fragments by 8.1× (16× multi-sampling, 0.5-pixel-area triangles).
A merge buffer of this size captures over 90% of the merges found
by an “ideal” buffer of unbounded size. The benefits of merging
decrease when multi-sampling is low. This result is not due to any
change in the behavior of MERGE: the number of quad fragments
generated by NOMERGE decreases at low multi-sampling because
triangles are less likely to cover multi-sample locations.

A 32-quad-fragment merge buffer constitutes only a small increase
in the current storage requirements for a modern GPU shader core.
High-end shader cores simultaneously shade more than 256 quad
fragments and must already store shading inputs and shader inter-
mediate values for these quad fragments. For the remainder of this
evaluation, we configure MERGE to use a 32-quad-fragment merge
buffer and render images using 16× multi-sampling.
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Figure 13: On average, MERGE performs 8.1 times less shading
work than NOMERGE.
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Figure 14: MERGE shades approximately as many fragments as
REYES (VERTEX) shades vertices. When fine-scale occlusion is
present (PTCLOUD, FURBALL), MERGE shades over two times less
than REYES because it culls quad fragments prior to shading.

Figure 13 illustrates the benefit of MERGE on a scene-by-scene ba-
sis. The average reduction in shading across all scenes (8.1×) is
shown as a vertical dotted line. The benefit of MERGE is the least
for FROG and FURBALL because these scenes exhibit characteris-
tics that limit opportunities for merging. FROG’s high-frequency
surface displacement causes triangles in the same grid to occlude
each other, preventing merges due to rule 2. FURBALL’s grids are
long and skinny (hairs). Triangles on the borders of hairs have no
neighbor to merge with.

4.1.3 Comparison With Vertex Shading

In Section 4.1.1, we measured that the MERGE pipeline significantly
reduced shading work, but the absolute number of shaded fragments
per pixel was greater than one (1.8). In a DiagSplit tessellation,
grids with 0.5-pixel-area triangles correspond to a density of ap-
proximately one vertex per pixel.

We compare the number of fragments shaded by MERGE with the
number of vertices shaded by VERTEX in Figure 14. Values greater
than one indicate that MERGE shades fewer fragments than VER-
TEX shades vertices. On average, when both pipelines perform ex-
actly the same occlusion culling operations (both only occlusion
cull entire grids), MERGE shades 12% more than VERTEX (orange
bars). This difference is explained in the top row of Figure 15
which shows a zoomed view of several grids from PLANE. Both
VERTEX and MERGE over-shade pixels at grid boundaries. VER-
TEX over-shades because adjacent grids contain a vertex at these
pixels. MERGE over-shades these pixels because quad fragments
from different grids will not be merged. In MERGE the over shade
occurs over a 2x2 pixel region, so over-shade occurs in more pixels
than in VERTEX.

However, when quad fragments are occlusion culled by
MERGE prior to shading (a common optimization in all modern
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Figure 15: Top: Quad-fragment shading yields more over-shade
at grid boundaries than the REYES pipeline’s vertex shading tech-
nique (VERTEX). Bottom: Quad-fragment occlusion culling elimi-
nates parts of grids that are shaded by REYES.

GPUs), MERGE shades 17% less than VERTEX (red bars). The ben-
efit of fine-granularity culling is particularly large in scenes, such
as FURBALL and PTCLOUD, that exhibit fine-scale geometry. VER-
TEX performs more than two times as many shading computations
as MERGE when rendering FURBALL. Culling shading work at grid
granularity can be inefficient even when fine-scale geometry is not
present, such as in the example from ARMY shown in the bottom
left image of Figure 15.

4.2 Quality

We rendered animations using all three pipelines and inspected the
quality of the resulting images. Specifically, we looked for artifacts
in the output of MERGE near silhouettes, as well as for texture level-
of-detail errors that would result from inaccurate derivative calcula-
tions. Although the outputs of the three pipelines are different, the
differences are subtle. For example, we observe that MERGE can
produce less accurate shader derivatives near silhouettes of sharply
curved surfaces. Still, in our tests, MERGE generates high-quality
output that is comparable to the output of both NOMERGE and VER-
TEX. We refer the reader to the video accompanying this paper to
compare the outputs generated by the three pipelines.

Our tests did show that MERGE can exacerbate artifacts caused by
shading outside a triangle. Figure 16 highlights the contents of the
multi-sample color buffer (top row) for one pixel of a rendering of
FROG. The bottom row of the figure shows a portion of the final im-
age surrounding this pixel. No triangle covers the pixel center, but
the multi-sample location closest to the pixel center is covered by a
nearly edge-on triangle. For this triangle, shading at the pixel center
produces an inaccurate, bright white result. In NOMERGE, only the
covered multi-sample is assigned this color, resulting in a subpixel
error in the final image (bottom-left). By contrast, MERGE uses
the erroneous shading result for all covered multi-samples in the
pixel, producing a noticeable bright spot in the final image (bottom-
center). Centroid sampling avoids these extrapolation errors, re-
moving this artifact from both the multi-sample results (top-right)
and the final image (bottom-right). Although centroid sampling is
not commonly used in GPUs today, we find it to be a valuable tech-
nique for the MERGE pipeline. To ensure accurate shader deriva-
tives when using centroid sampling, it is important to modify the
finite difference calculations employed by current GPUs [Microsoft
2010] to account for the actual locations of shading sample points.
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Figure 16: Sampling shading outside a grazing triangle can pro-
duce artifacts in both NOMERGE (left column) and MERGE (center
column). Shading artifacts from the grazing triangle are more no-
ticeable in MERGE because they are applied to all multi-sample
locations in the pixel. Centroid sampling corrects these artifacts
(right column).

5 Discussion

We have presented an evolution of GPU architecture that supports
efficient shading of surfaces represented by micropolygons and
small triangles. For micropolygons with an area of half a pixel, our
approach reduces the number of fragments shaded by more than a
factor of eight relative to a modern GPU. Often, a quad-fragment
merging pipeline performs a similar amount of shading work as the
REYES pipeline’s vertex-shading technique. In cases of complex
occlusion, it performs less than half the shading work of REYES.

The advent of efficient GPU tessellation makes the shading of
small triangles (a few pixels in area) increasingly important, even if
micropolygon-resolution surfaces are not required. Quad-fragment
merging, unlike REYES, addresses this intermediate workload. The
need to efficiently shade small triangles combined with the low
cost and evolutionary nature of a quad-fragment merging approach
should facilitate its incorporation into mainstream GPUs.

Quad-fragment merging requires a description of triangle connec-
tivity. Our implementation obtains connectivity from the tessel-
lation unit. Alternatively, connectivity can be provided through
indexed-vertex-buffer formats, allowing triangle meshes to be ren-
dered using quad-fragment merging without the need for pipeline
tessellation.

This study of shading efficiency adds to our recent work on tessel-
lation [Fisher et al. 2009] and rasterization [Fatahalian et al. 2009]
that aims to design a GPU optimized for micropolygon render-
ing. Despite significant advances toward this goal, many interesting
questions remain. For example, it is not obvious whether fragment
or vertex-based shading techniques are preferred under different
scene workloads or rendering conditions. Also, combining quad-
fragment merging with recent attempts to incorporate motion and
defocus blur in a modern GPU pipeline [Ragan-Kelley et al. 2010]
should be immediately explored.
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